12th Workshop on Spectroscopic Ellipsometry 20 September 2023, Praha, Czech Republic

Theory of Direct Band Gap Absorption in Highly Excited Semiconductors

AVS 2022, Pittsburgh, PA

Stefan Zollner

With: Melissa Rivero Arias, Carlos A. Armenta, Carola Emminger, Cesy M. Zamarripa, Jaden R. Love, Nuwanjula S. Samarasingha, Sonam Yadav

Email: <u>zollner@nmsu.edu</u>. WWW: <u>http://femto.nmsu.edu</u>. Ask me about MS/Ph.D. student positions at NMSU.

BE BOLD. Shape the Future.

Department of Physics New Mexico State University, Las Cruces, NM, USA

Problem Statement: Direct Gap Absorption

Carola Emminger *et al.*, JAP **131**, 165701 (2022). 2

Problem Statement

- Achieve a <u>quantitative</u> understanding of absorption and emission processes. Our <u>qualitative</u> understanding of such processes is 50-100 years old, but <u>insufficient</u> for modeling of detectors and emitters.
- 2. How are optical processes affected by <u>high carrier concentrations</u> (screening)? High carrier densities can be achieved with
 - a) In situ doping or
 - b) ultrafast lasers or
 - c) <u>high temperatures</u>.

<u>Goal</u>: CMOS-integrated mid-infrared camera (thermal imaging with a phone).

Fermi's Golden Rule: Tauc Plot

Direct band gap absorption

$$\frac{1}{\tau} = \frac{2\pi}{\hbar} \int_{i,f} |\langle f | H_{eR} | i \rangle|^2 \delta \left(E_f - E_i - \hbar \omega \right) = \frac{2\pi}{\hbar} |\langle f | H_{eR} | i \rangle|^2 g_{fi}(\hbar \omega)$$

$$\langle f | H_{eR} | i \rangle = \frac{e}{m_0} \langle f | \vec{p} | i \rangle \cdot \vec{A}_0$$

Use $\mathbf{k} \cdot \mathbf{p}$ matrix element *P*: $E_P = 2P^2/m_0$

$$\varepsilon_{2}(\hbar\omega) = \frac{e^{2}\sqrt{m_{0}}\mu^{\frac{3}{2}}}{3\pi\sqrt{2}\varepsilon_{0}\hbar} \frac{E_{P}\sqrt{E_{0}}}{(\hbar\omega)^{2}} \sqrt{\frac{\hbar\omega}{E_{0}} - 1}$$

k·p Theory (Band Structure Method)

Schrödinger equation

$$H\Phi_{n\vec{k}} = \left(\frac{\vec{p}^2}{2m} + V\right)\Phi_{n\vec{k}} = E_{n\vec{k}}\Phi_{n\vec{k}}$$

Use Bloch's theorem:

$$\Phi_{n\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{n\vec{k}}(\vec{r})$$
Product rule
$$(fg)'' = f''g + 2f'g' + fg''$$

Solve equation for **k**=0.

$$\left(\frac{\vec{p}^2}{2m} + \frac{\hbar^2 \vec{k}^2}{2m} + \frac{\hbar \vec{k} \cdot \vec{p}}{m} + V\right) u_{n\vec{k}} = E_{n\vec{k}} u_{n\vec{k}}$$

Treat red term in perturbation theory.

Outcomes:

Optical dipole matrix element, effective masses, exciton energies, nonparabolicity, k-dependent matrix elements

BE BOLD. Shape the Future.

Yu & Cardona, Fundamentals of Semiconductors Kane, J. Phys. Chem. Solids **1**, 249 (1957). Kane 1966.

Elliott-Tanguy Exciton Absorption

Direct band gap absorption

Excitonic binding energy: $R=R_H \times \mu_h / \epsilon_s^2$

$$\varepsilon_{2}(\hbar\omega) = \frac{e^{2}\sqrt{m_{0}}\mu^{\frac{3}{2}}}{3\pi\sqrt{2}\varepsilon_{0}\hbar} \frac{E_{P}\sqrt{R}}{(\hbar\omega)^{2}} \left[\sum_{n=1}^{\infty} \frac{4\pi R}{n^{3}} \delta\left(\hbar\omega - E_{0} + \frac{R}{n^{2}}\right) + \frac{2\pi H(\hbar\omega - E_{0})}{1 - \exp\left(-2\pi\sqrt{R}/\hbar\omega - E_{0}\right)} \right]$$

Elliott-Tanguy theory applied to Ge

Fixed parameters:

- Electron and hole masses (temperature dependent)
- Excitonic binding energy R
- Amplitude A (derived from matrix element P)

Carola Emminger *et al.*, JAP **131**, 165701 (2022). 7

No success for other semiconductors

Carola Emminger *et al.*, JAP **131**, 165701 (2022). 8

Kane's 8x8 k[.]p Hamiltonian

$$\widetilde{H}_{\vec{k}} = \begin{pmatrix} E_0 & 0 & -\frac{\hbar k}{m_0} iP & 0 \\ 0 & -\frac{2\Delta_0}{3} & \frac{\sqrt{2}\Delta_0}{3} & 0 \\ \frac{\hbar k}{m_0} iP & \frac{\sqrt{2}\Delta_0}{3} & -\frac{\Delta_0}{3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Outcome:

Nonparabolicity, k-dependent matrix elements. Analytical solutions.

Characteristic equation is cubic: Solve with Vieta's method.

$$\tilde{E}(\tilde{E}-E_0)(\tilde{E}+\Delta_0)-\frac{\hbar^2k^2E_P}{2m_0}\left(\tilde{E}+\frac{2\Delta_0}{3}\right)=0$$

Approximations exist for small or large spin-orbit splittings but are not satisfactory. We need a **perturbative solution** to the cubic equation for small wave vectors k.

Optical Absorption at High Carrier Densities

Dielectric function of InSb from 80 to 800 K

- **Band gap** changes with temperature (but only below 500 K).
- Amplitude reduction at high temperatures (Pauli blocking, bleaching)
- **Drude response** at high temperatures (thermally excited carriers).
- Depolarization artifacts at long wavelengths (below 300 K).

Woollam FTIR-VASE cryostat with CVD diamond windows

BE BOLD. Shape the Future.

Rivero Arias, JVSTB **41**, 022203 (2023)

Required model improvements: Screened Excitons

$$\varepsilon_{2}(E) = \frac{2\pi A\sqrt{R}}{E^{2}} \left\{ \sum_{n=1}^{\sqrt{g}} \frac{2R}{n} \left(\frac{1}{n^{2}} - \frac{n^{2}}{g^{2}} \right) \delta \left[E - E_{0} + \frac{R}{n^{2}} \left(1 - \frac{n^{2}}{g} \right)^{2} \right] + \frac{\sinh(\pi g k) H(E - E_{0})}{\cosh(\pi g k) - \cosh\left(\pi g \sqrt{k^{2} - \frac{4}{g}}\right)} \right\} [f_{h}(E) - f_{e}(E)]$$

- Absorption by screened excitons (Hulthen potential)
- Screening parameter $g=12/\pi^2 a_R k_{TF}$ (large: no screening)
- Two terms for light and heavy excitons
- Numerical Kramers-Kronig transform (Fermi factors)
- Non-parabolicity and temperature-dependent mass from k.p theory
- Degenerate Fermi-Dirac statistics with nonparabolic DOS to calculate $f_h \& f_e$.
- k-dependent matrix element P.
- Only two free parameters: Band gap E_0 and broadening Γ
- Amplitude *A* and exciton binding energy *R* from k.p theory and effective masses
- Band gap renormalization.

BE BOLD. Shape the Future.

Christian Tanguy, Phys. Rev. B **60**, 10660 (1999). Jose Menendez, Phys. Rev. B **101**, 195204 (2020). Carola Emminger, J. Appl. Phys. **131**, 165701 (2022).

Band gap analysis for InSb

How does the band gap of InSb change with temperature?

Parametric-Semiconductor Model:

1 user-insb-oxide	28	21 A							
0 PSEMI		1 mm							
arameterized Semiconductor Li	iyer								×
Layer Name: PSEM									
Comment: Parameterize	d Semicond	actor Lag	yer						
Thickness: 1	mm 🔲 Fit								
Position (eV): Magnitude:			Optical Constants >>				Ok		
Pole #1: 8 3.2463 🔽							Delete Layer		
Pole #2: 0.02	e-005 🔽			1	k		Replace	Layer	
Joint DOS Parameters:	Change			Left of CI			Right of (CP:	
Sel: Energy: Amp: Conner	st: Br: I	Discont:	Mid Pos	Mid Amp	2nd order	Mid Pos	Mid Amp	2nd orde	er
			:						
0: 0.2262 F 0.3141 F 0,2	4.748 F	0.9990 F	0.5000	0.5000	0.0000	0.8401 F	1.8912 F	0.0000	^
1: 0.5000 0.0703 1,2	56,682	0.2768	0.4519	0.0875	1.0000	0.8000	0.5204	0.0000	
3: 2.3086 8.3773 0,4	61.667	0.1430	0.3000	0.0300	0.0000	0.1000	0.0300	0.0000	
14: 3.5529 12.2446 3,8 15: 3.8727 47.1769 3.8	177.396	-0.3500	0.4000	0.2495	0.0000	0.9000	0.4000	0.0000	
6: 5.2758 1.8163 3,8	250.000	0.9500	0.8000	0.0600	0.0000	0.1000	0.3797	0.0000	
7: 5.8715 1.0438 3,8	300.000	0.9500	0.8000	0.0600	0.0000	0.1000	0.0243	0.0000	
8: 7.0000 2.9256 7,8	700.000	0.0000	0.5000	0.5000	0.0000	0.5000	0.5000	0.0000	
10: 5.0000 10.0000 9, 11	50.000	0.0000	0.5000	0.5000	0.0000	0.5000	0.5000	0.0000	
11: 5.5000 10.0000 10 ,	12 50.000	0.0000	0.5000	0.5000	0.0000	0.5000	0.5000	0.0000	~
🌮 Fit		F	inal						
MSE		0	.295	ŏ					
En0.0		0	.226	:15 :	£ 0.0	008	89		t
Br0.0		4	.747	'8 ±	1.32				
Am0.0			0.31415 ± 124						
Disc0.0			0.999 ± 788						
RPos0.0			0.84009 ± 0.0264						
RAmp0.0			1 8912 + 0 191						
BoloMag 0			3 2469 + 6 56						
Fulleiviag.0			J.2403 I 0.30						
PoleMag2.0			1e-005 ± 0.000568						
-									

Also vary "shape parameters".

Asymmetric peak shape poorly described.

Try Tanguy oscillator for excitonic line shape.

C. M. Herzinger, B. Johs, et al., J. Appl. Phys. **83**, 3323 (1998) Rivero Arias, JVSTB **41**, 022203 (2023) 13

Band gap of InSb from 80 to 800 K

- Band gap changes with temperature (but only below 500 K)
- Described by Bose-Einstein model below 500 K: Logothetidis, PRB 31, 947 (1985).
- No redshift above 500 K: Thermal Burstein-Moss shift

BE BOLD. Shape the Future.

T.S. Moss, Proc. Phys. Soc. **67**, 775 (1954). E. Burstein, Phys. Rev. **93**, 632 (1954).

Thermal excitations of electron-hole pairs in InSb

Rivero Arias, JVSTB **41**, 022203 (2023)

Carrier concentration and mobility from 80 to 800 K

To model the **Drude response**, we make some really simple assumptions:

- Parabolic bands (ignore nonparabolicity)
- Effective mass constant m_e=0.014 (independent of temperature)

Conclusions

- Quantitative modeling of low-density optical processes is possible with basic physics and matrix elements from k.p theory:
 - Photoluminescence in Ge
 - Indirect gap absorption in Ge
 - Direct gap absorption in Ge at low T
 - More work is needed with input from k·p theory (nonparabolicity, matrix elements)
- High carrier excitations:
 - High electron doping density in Ge (Menendez)
 - Thermal excitation of electron-hole pairs in InSb
 - Femtosecond laser generation of electron-hole pairs in Ge (ELI Beamlines)
 - Experimental data and qualitative explanations exist
- We need more experiments and more detailed theory and simulations.

Thank you!

Questions?